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Motivation

Why Parallel Discrete-Event Simulation (DES)?
— Large-scale systems are difficult to understand
— Analytical models are often constrained

Parallel DES simulation offers:

Dramatically shrinks model’s execution-time
Prediction of future “what-if’ systems performance
Potential for real-time decision support

e Minutes instead of days
e Analysis can be done right away

Example models: national air space (NAS), ISP
backbone(s), distributed content caches, next generation

supercomputer systems.
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Ex: Movies over the Internet

e Suppose we want to model gEeepeee S
1 million home ISP
customers downloading a 2
GB movie

T 3 Home | i Booknarts @ Red Hat Neowark. o4 Suppont A Snap i Products (& Traineg

e How long to compute?

— Assume a nominal 100K ev/sec
seg. simulator

Fig. 5. AT&T Network Topology (AS 7118) from the Rocketfuel data bank for the continental US.

— Assume on avg. each packet

takes 8 hops e 16+ trillion events @ 100K ev/sec
— 2GB movies yields 2 trillion 1K

data packets.

— @ 8 hops yields 16+ trillion Over 1,900 days!!! Or

events
5+ years!!!

Need massively parallel simulation to
make tractable
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Discrete Event Simulation (DES)

Discrete event simulation: computer model for a system where
changes in the state of the system occur at discrete points in
simulation time.

Fundamental concepts:
e system state (state variables)
e state transitions (events)

A DES computation can be viewed as a sequence of event
computations, with each event computation is assigned a
(simulation time) time stamp

Each event computation can
e modify state variables
e schedule new events

A
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DES Computation

example: air traffic at an airport
events: aircraft arrival, landing, departure

rrival
arnva \ Schedules

8:00 N [ processed event

] current event

Elple[-Tol >~~~ —= —
8:05 B [ unprocessed event

simulation time

= Unprocessed events are stored in a pending list
= Events are processed in time stamp order
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Discrete Event Simulation System

model of the Simulation Application
- state variables

physical  code modeling system behavior
system - 1/0 and user interface software
calls to [
schedule calls to event
. handlers
independent events |
of the Simulation Executive
simulation * event list management
C - managing advances in simulation time
application
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Event-Oriented World View

Event handler procedures

state variables

Integer: InTheAir; Arrival Landed Departure

Integer: OnTheGround;

Boolean: RunwayFree; Event Event Event
Simulation application } } }

Simulation executive Event processing loop

While (simulation not finished)

Now = 8:45 . ;
E = smallest time stamp event 1in
Pending Event List (PEL) PEL
9:00 0:10 Remove E from PEL
9:16

Now := time stamp of E
call event handler procedure
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Ex: Air traffic at an Airport
Model aircraft arrivals and departures, arrival queueing
Single runway model; ighores departure queueing
= R =time runway is used for each landing aircraft (const)
" G =time required on the ground before departing (const)
State Variables
= Now: currentsimulation time
= InTheAir: number of aircraft landing or waiting to land
" OnTheGround: number of landed aircraft
» RunwayFree: Boolean, true if runway available
Model Events
e Arrival:denotes aircraft arriving in air space of airport
e Landed: denotes aircraft landing
e Departure: denotes aircraft leaving
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Arrival Events

New aircraft arrives at airport. If the runway is free, it will begin
to land. Otherwise, the aircraft must circle, and wait to land.

e R =time runway is used for each landing aircraft

e G =time required on the ground before departing

e Now: currentsimulation time

e ITnTheAir: number of aircraft landing or waiting to land
e OnTheGround: number of landed aircraft

e RunwayFree: Boolean, true if runway available

Arrival Event:
InTheAir := InTheAir+1;
If (RunwayFree)
RunwayFree:=FALSE;
Schedule Landed event @ Now + R;
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Landed Event

An aircraft has completed its landing.

e R =time runway is used for each landing aircraft

e G =time required on the ground before departing

e Now: current simulation time

e [nTheAir: number of aircraft landing or waiting to land
e OnTheGround: number of landed aircraft

e RunwayFree: Boolean, true if runway available

Landed Event:
InTheAir:=InTheAir-1;
OnTheGround:=0OnTheGround+1;
Schedule Departure event @ Now + G;
If (InTheAir>0)

Schedule Landed event @ Now + R;
Else

RunwayFree := TRUE;
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Departure Event

An aircraft now on the ground departs for a new dest.

¢ R =time runway is used for each landing aircraft
e G =timerequired on the ground before departing

e Now: current simulation time
¢ [nTheAir: number of aircraft landing or waiting to land

e OnTheGround: number of landed aircraft
e RunwayFree: Boolean, true if runway available

Departure Event:
OnTheGround := OnTheGround - 1;
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Execution Example

State
Variables

InTheAir

OnTheGround

RunwayFree

R=3
t G=4
0 1 2 0)
0) 2 1 0)
truelfalse true
i i i i } { } } —>

0 1 2 3 4 5 6 7 8 9 10 11
Simulation Time

Processing: Arrival F1 Arrival F2 Landed F1 Landed F2 Depart Fl Depart F2

Landed F1

1 | Arrival F1
3 | Arrival F2

3 | Arrival F2
4 | Landed F1

7 | Landed F2

8 [ Depart F1

8 [ Depart F1
11 [ Depart F2 11 [ Depart F2

Now=8 Now=11

Now="7

Now=1 Now=3 Now=4

Now=0
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How to Synchronize Parallel Simulations?

barrier

PE 1 PE 2 PE 3

Virtual
Time

parallel time-stepped simulation:

. processed event

! “straggler” event

oi

Virtual
Time

parallel discrete-event simulation:
ust allow for sparse, irregular
vent computations

Problem: events arriving

. ir;,.tﬁe past
r .
Approach: Time Warp

PE 3

PE 1 PE 2
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Massively Parallel Discrete-Event Simulation Via
Time Warp

Local Control Mechanism:

V v A Global Control Mechanism:

i error detection and rollback i | compute Global Virtual Time (GVT)
r (1) undo N/ I Jcollect versions

t | stateA’s t |of state / events

u \ — u & perform 1/0

a | (2) cancel a |operations

| | “sent” events | [thatare<GVT

.
i
m
e
LP 1 LP 2 LP 3 LP 1 LP 2 LP 3
. processed event unprocessed event
. “straggler” event . “committed” event
v @ Rensselaer




Whew .. Time Warp sounds
expensive are there other PDES
Schemes?...

= “Non-rollback” options:

— Called “Conservative” because they disallow
out of order event execution.

— Deadlock Avoidance
e NULL Message Algorithm

— Deadlock Detection and Recovery

a ®) Rensselaer
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Null Message Algorithm: Speed Up

toroid topology e vary time stamp increment distribution
e message density: 4 per LP e |ILAR=lookahead / average time stamp
- . increment
e 1 millisecond computation per event

12

—o—8x8 Biased
(ILAR=0.9)
9 ——8x8 Uniform
(ILAR=0.18)
S —%8x8 Bimodal
2 & | (ILAR=0.1)
()]
o
o

— 14
——4x4 Biased
(ILAR=0.9)
) —x—4x4 Uniform
3 —— (ILAR=0.18)
N . |4x4 Bimodal
I —— (ILAR=0.1)
O — | | | L}
0 4 8 12 16

Number of Processors

Conservative algorithms live or die by their lookahead!




Deadlock Detection & Recovery

Algorithm A (executed by each LP):
Goal: Ensure events are processed in time stamp order:

WHILE (simulation is not over)
wait until each FIFO contains at least one message
remove smallest time stamped event from its FIFO
process that event

END-LOOP

e No null messages

e Allow simulation to execute until deadlock occurs
e Provide a mechanism to detect deadlock

e Provide a mechanism to recover from deadlocks
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Deadlock Recovery

Deadlock recovery: identify “safe” events (events that can be processed w/

o violating local causality),

deadlock state

Assume minimum delay
between airports is 3

Which events are safe?

SFO
(waiting
on JFK)

orD [
(waiting

/ on SFO) \

—
—

Time stamp 7: smallest time stamped event in system
- Time stamp 8, 9: safe because of lookahead constraint
Time stamp 10: OK if events with the same time stamp can be processed in any

order
No lookahead creep!

JFK

(waiting

E! on ORD)
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Preventing LA Creep Using Next Event Time Info

SFO
(waiting
on JFK)

ORD
(waiting
on SFO)

—
—

JFK
(waiting
on ORD)

T+L (L = lookahead)

Observation: smallest time stamped event is safe to process

e Lookahead creep avoided by allowing the synchronization algorithm to immediately
advance to (global) time of the next event

e Synchronization algorithm must know time stamp of LP” s next event

e Each LP guarantees a logical time T such that if no additional events are delivered to
LP with TS < T, all subsequent messages that LP produces have a time stamp at least
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No Free Lunch for PDES!

= Time Warp = State saving overheads
= Null message algorithm =» Lookahead creep problem
— No zero lookahead cycles allowed

= Lookahead = Essential for concurrent processing of events for
conservative algorithms

— Has large effect on performance = need to program it

= Deadlock Detection and Recovery = Smallest time stamp event
safe to process

— Others may also be safe (requires additional work to determine
this)
= Use time of next event to avoid lookahead creep, but hard to
compute at scale...

Can we avoid some of these overheads and complexities??
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Our Solution: Reverse Computation...

e Use Reverse Computation (RC)
— automatically generate reverse code from model source
— undo by executing reverse code

e Delivers better performance

— negligible overhead for forward computation
— significantly lower memory utilization

Modified Code Reverse Code

@) Rensselaer




on packet arrival...

Forward

Original

Ex: Simple Network Switch

if(glen<B)
glen++

delays[glen]++

else

lost++

if(glen<B)
bl=1
glen++
delays[qglen]++
else
bl1=0

lost++

Reverse

if(bl==1)
delays[qglen]--
glen--

else
lost--
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Benefits of Reverse Computation
e State size reduction
—from B+2 words to 1 word
—e.g. B=100 => 100x reduction!
e Negligible overhead in forward computation
—removed from forward computation
— moved to rollback phase
e Result
— significant increase in speed
—significant decrease in memory

e How?...
d @ Rensselaer



Beneficial Application Properties

Majority of operations are constructive
—e.g., ++, --, etc.

2. Size of control state < size of data state
—e.g., sizeof bl <sizeof glen, sent, lost, etc.

3. Perfectly reversible high-level operations
gleaned from irreversible smaller operations

— e.g., random number generation

d @) Rensselaer



ROSS Rules for Automation...

Generation rules, and upper-bounds on bit requirements for various statement types

Type Description Application Code Bit Requirements
Original Translated Reverse Self ' Child Total
TO  simple choice if() s1 if() {s1; b=1;} if(lb==1)inv(s1);} 1x1, 1+
else s2 else {s2; b=0;} else{inv(s2);} X2  max(x1,x2)
T compound choice if() s1; if() {s1; b=1;} if(lb==1) {inM(s1);} lgin) x1, lg(n) +
(n-way) elseif() s2;  elseif() {s2; b=2;} elseif(b==2) {inVs2);} X2,  max(x1....xn)
elseif() s3;  elseif() {s3; b=3;} elseif(b==3) {inV(s3);}
else()sn;  else{sn; b=n;} else {inv(sn);} XN
T2  [fixed iterations (n) for(n)s; for(n) s; for(n) inv(s); 0'x n*x
T3 |variable iterations while() s; b=0; for(b) inv(s); lgin) x lg(n) +n*x
(maximum n) while() {s; b++;}
T4 function call foo(); foo(); inv(foo)(); 0'x X
T5  constructive V@ =W, V@ = W; V= Q@w; 0 0 0
assignment
T6  k-byte destructive v=w; {b=vv=w} v=Db; 8k 0 8k
assignment
T/ sequence s1; st; inv(sn); 0 x1+ [ x1+...+xn
s2: s2: inv(s2); ot
sn; sn; inv(s1); Xn
T8  Nesting of TO-T7 Recursively apply the above Recursively apply the above
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Destructive Assignment...

e Destructive assignment (DA):
— examples: x = y;
X 3=y

— requires all modified bytes to be saved

e Caveat:

— reversing technique for DA’s can degenerate to traditional incremental
state saving

e Good news:

— certain collections of DA’s are perfectly reversible!

— queueing network models contain collections of easily/perfectly
reversible DA’s

e gueue handling (swap, shift, tree insert/delete, ...)
e statistics collection (increment, decrement, ...)
e random number generation (reversible RNGs)
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Reversing an RNG?

double RNGGenVal(Generator g)

long k,s;
double u;
u=0.0;

s=Cg [0][g]; k=s/46693;

s =45991 * (s - k * 46693) - k * 25884;
if (s <0)s=s+ 2147483647,

Cg[0]lg] =s;
u=u-+4.65661287524579692¢-10 * s;

s=Cg[l][g]; k=s/10339;
s=207707 * (s - k * 10339) - k * 870;
if (s <0)s=s+2147483543;
Cg[1][g] =s;
u=u-4.65661310075985993e-10 * s;
if(u<0)u=u+1.0;

s=Cg[2][g]; k=s/15499;

s = 138556 * (s - k * 15499) - k * 3979;
if (s <0.0) s=s+2147483423;
Cg[2][g] =s;
u=u+4.65661336096842131e-10 * s;
if(u>=1.0)u=u-1.0;

s=Cg [3][g]; k=s/43218;

s =49689 * (s -k *43218) - k * 24121,
if (s <0)s=s+2147483323;

Cg[3][g] =s;
u=u-4.65661357780891134¢-10 * s;
if(u<0)u=u-+1.0;

return (u);

Observation: k =s / 46693 is a Destructive Assighment
Result: RC degrades to classic state-saving...can we do better?

@) Rensselaer




ROSS RNGs: A Higher Level View

The previous RNG is based on the following recurrence....

X. =ax. ; modm,

) 1*1,n-

where Xi  one of the four seed values in the Nth set, mi 1s one the four largest primes
b

less than 23!, and d; is a primitive root of 111..

Now, the above recurrence 1s in fact reversible....

inverse of Ad; modulo 111, is defined,
b. = a™i> mod m,

Using bi we can generate the reverse recurrence as follows:
M

X; p.1 = biX; , mod m;

1,n
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Reverse Code Efficiency...

* Property...

— Non-reversibility of indvidual steps DO NOT imply
that the computation as a whole is not reversible.

— Can we automatically find this “higher-level”
reversibility?

e Other Reversible Structures Include...
— Circular shift operation

— Insertion & deletion operations on trees (i.e., priority
gueues).

Reverse computation is well-suited for small grain event
models!
o ©@ Rensselaer
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ROSS: Local Control Implementation

MPI_ISend/MPI_Irecv used to
send/recv off core events

Event & Network memory is
managed directly.
— Poolis allocated @ startup

Event list keep sorted using a
Splay Tree (logN)
LP-2-Core mapping tables are

computed and not stored to

avoid the need for large global
LP maps.

—pe L

03_'—|

Local Control Mechanism:
error detection and rollback

(1) undo

state A s \

(2) cancel
“sent” events

LP 1 LP 2 LP 3
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ROSS: Global Control Implementation

GVT (kicks off when memory is low): v A Global Control Mechanism:
1.  Each core counts #sent, #recv i | compute Global Virtual Time (GVT)
2. Recv all pending MPI msgs. r eollect versions
3.  MPI_Allreduce Sum on (#sent - t |of state / events
#recv) u | & perform I/0
4.  If #sent - Hrecv =0 goto 2 5 |operations
5. Compute local core’s lower bound | [thatare <GVT
time-stamp (LVT).

6. GVT = MPI_Allreduce Min on LVTs

gvt-interval/batch parameters control
how frequently GVT is done.

Note, repurposed GVT to implement
conservative YAWNS algorithm!

LP 1 LP 2 LP 3

So, how does this translate into ROSS performance on BG/Q?
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\
ROSS Strong Scaling Performance on Sequoia

5.5e+11

I I I I o1
—— Actual Sequoia Performance
5e+11 - —5<— Linear Performance
450411 - (2 racks as base) -
=
o de+11
0
Y 3.5e+1l1
)
o 3e+11
o
— 2.5e+11
3
o’ 2e+11
§ 1.5e+11
- le+11
5e+10
O I I I |
28 24 48 96 120

Number of Blue Gene/Q Racks
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ROSS: Conservative/YAWNS vs. Optimistic on BG/L..

Event Rate

3.

=

5e+09

3e+09

.5e+09

2e+09

.5e+09

le+09

5e+08

16,384 Processor Performance

At large lookaheads,

x
———————;;x—————-———————————————_,—:--—-»—"ﬁgnservative and optimistic
- T are nearly equal but most
modes lack this
* =

Conservative very poor at low
lookahead which we tend to
have in system models (e.g.,
network link delay)

.1 0.25 0.5 0.9
Lookahead
—+—— Opt/No-Stag ---*--- Cons/No-Stag
——%X--- Opt/Stag - B Cons/Stag
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ROSS Model Building Steps

= Define LP and event/message data structures

= Define event handlers for initialize, forward, reverse and final
processing for each LP type

= Define a custom mapping function for LPs to MPI ranks or use
built-in “linear” or “round-robin”

= Bind LPs to KPs in model’s “main”

" |nvoke “tw_run” in model’s “main”
= Collect stats directly using MPI collective calls

— Lots of flexibility here, ROSS does not define an APl here
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ROSS Command Line Parameters

=  Model:
— -nlp=n number of LPs per processor (default 8)
— --mean=ts exponential distribution mean for timestamps (default 1.00)
— --mult=ts multiplier for event memory allocation (default 3.00)
— --lookahead=ts lookahead for events (default 1.00)
— --start-events=n  number of initial messages per LP (default 1)
— --memory=n additional memory buffers (default 100)
—  --run=str user supplied run name (default undefined)
=  Kernel:
—  --synch=n Sychronization Protocol: SEQUENTIAL=1, CONSERVATIVE=2, OPTIMISTIC=3, OPTIMISTIC DEBUG=4 (default
0)
— --nkp=n number of kernel processes (KPs) per pe (default 1)
— --end=ts simulation end timestamp (default 100000.00)
— --batch=n messages per scheduler block (default 16)
=  GVT:

— --gvt-interval=n  GVT Interval (default 16)

— --report-interval=ts percent of runtime to print GVT (default 0.05)
Timing:

— -—clock-rate=ts  CPU Clock Rate (default 21000000000.00)

— —help show this message
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ROSS Model Developer Tips & Tricks

= Make sure you model’s event population is stable (e.g., event handlers on
average don’t create/schedule more than 1 event).

= Don’t access another LP’s state directly = NO SHARED LP STATE!
= Message/event data is read-only, except when using for state-saving

= Use distinct RNG seeds for different actions within an LP to avoid
correlations in time-stamps.

— Note, you can control the number of seed sets per LP.
= Get you model working serial first
=  Get your model working YAWNS/conservative next (--synch=2)
= Get your model working optimistically last (--synch=3)

— Debug using —synch=4 scheduler

= Model is not valid until serial, conservative and optimistic all execute/
commit the same number of events.

= Avoid tie events by adding “random jitter” to event time stamps
= Reduce rollbacks by shrinking “batch” parameter
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